Your browser doesn't support javascript.
loading
Bioinspired Confined Assembly of Cellulosic Cholesteric Liquid Crystal Bubbles.
Wang, Qiao; Zhang, Zhuohao; Wang, Chong; Yang, Xinyuan; Fang, Zhonglin; Shang, Luoran.
Afiliación
  • Wang Q; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  • Zhang Z; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  • Wang C; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  • Yang X; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  • Fang Z; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  • Shang L; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Adv Sci (Weinh) ; 11(11): e2308442, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38225706
ABSTRACT
Construction of biomimetic models for structural color evolution not only gives new photonic phenomena but also provide cues for biological morphogenesis. Here, a novel confined self-assembly method is proposed for the generation of hydroxypropyl cellulose (HPC)-based cholesteric liquid crystals (CLCs) microbubbles. The assembly process relies on the combination of droplet microfluidics, solvent extraction, and a volume confined environment. The as-prepared HPC structural color microbubbles have a transparent shell, an orderly arranged cholesteric liquid crystal (CLC) middle layer, and an innermost bubble core. The size of the microbubble, shell thickness, and the color of the CLC layer can be adjusted by altering the microfluidic parameters. Intriguingly, benefited from the compartmentalization effect provided by droplet microfluidics, microbubbles with multiple cores of different color combinations are generated under precise control. The self-assembled CLCs microbubbles have bright structural color, suspending ability, and good temperature-sensitive characteristics, making them ideal underwater sensors. The present confined assembly approach will shed light on creating novel photonic structures and the HPC microbubble will find widespread applications in multifunctional sensing, optical display, and other related fields are believed.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Sci (Weinh) / Advanced science (Weinheim) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Sci (Weinh) / Advanced science (Weinheim) Año: 2024 Tipo del documento: Article País de afiliación: China
...