Your browser doesn't support javascript.
loading
Overlooked Hydrogen Bond in a Blue Copper Protein Uncovered by Neutron and Sub-Ångström Resolution X-ray Crystallography.
Fukuda, Yohta; Lintuluoto, Masami; Kurihara, Kazuo; Hasegawa, Kazuya; Inoue, Tsuyoshi; Tamada, Taro.
Afiliación
  • Fukuda Y; Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan.
  • Lintuluoto M; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Osaka, Japan.
  • Kurihara K; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
  • Hasegawa K; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai 319-1106, Ibaraki, Japan.
  • Inoue T; Structural Biology Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Hyogo, Japan.
  • Tamada T; Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan.
Biochemistry ; 63(3): 339-347, 2024 Feb 06.
Article en En | MEDLINE | ID: mdl-38232298
ABSTRACT
Metalloproteins play fundamental roles in organisms and are utilized as starting points for the directed evolution of artificial enzymes. Knowing the strategies of metalloproteins, by which they exquisitely tune their activities, will not only lead to an understanding of biochemical phenomena but also contribute to various applications. The blue copper protein (BCP) has been a renowned model system to understand the biology, chemistry, and physics of metalloproteins. Pseudoazurin (Paz), a blue copper protein, mediates electron transfer in the bacterial anaerobic respiratory chain. Its redox potential is finely tuned by hydrogen (H) bond networks; however, difficulty in visualizing H atom positions in the protein hinders the detailed understanding of the protein's structure-function relationship. We here used neutron and sub-ångström resolution X-ray crystallography to directly observe H atoms in Paz. The 0.86-Å-resolution X-ray structure shows that the peptide bond between Pro80 and the His81 Cu ligand deviates from the ideal planar structure. The 1.9-Å-resolution neutron structure confirms a long-overlooked H bond formed by the amide of His81 and the S atom of another Cu ligand Cys78. Quantum mechanics/molecular mechanics calculations show that this H bond increases the redox potential of the Cu site and explains the experimental results well. Our study demonstrates the potential of neutron and sub-ångström resolution X-ray crystallography to understand the chemistry of metalloproteins at atomic and quantum levels.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cobre / Metaloproteínas Idioma: En Revista: Biochemistry Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cobre / Metaloproteínas Idioma: En Revista: Biochemistry Año: 2024 Tipo del documento: Article País de afiliación: Japón
...