Your browser doesn't support javascript.
loading
Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly.
Evans, Constantine Glen; O'Brien, Jackson; Winfree, Erik; Murugan, Arvind.
Afiliación
  • Evans CG; California Institute of Technology, Pasadena, CA, USA. cge@dna.caltech.edu.
  • O'Brien J; Evans Foundation for Molecular Medicine, Pasadena, CA, USA. cge@dna.caltech.edu.
  • Winfree E; Maynooth University, Maynooth, Ireland. cge@dna.caltech.edu.
  • Murugan A; University of Chicago, Chicago, IL, USA. jdobrien07@gmail.com.
Nature ; 625(7995): 500-507, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38233621
ABSTRACT
Inspired by biology's most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles1-3. Analogous high-dimensional, highly interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks4-7. Might collective modes analogous to neural computation be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation depends sensitively on the extent of colocalization of high-concentration tiles within the three structures. The system was trained in silico to classify a set of 18 grayscale 30 × 30 pixel images into three categories. Experimentally, fluorescence and atomic force microscopy measurements during and after a 150 hour anneal established that all trained images were correctly classified, whereas a test set of image variations probed the robustness of the results. Although slow compared to previous biochemical neural networks, our approach is compact, robust and scalable. Our findings suggest that ubiquitous physical phenomena, such as nucleation, may hold powerful information-processing capabilities when they occur within high-dimensional multicomponent systems.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Reconocimiento de Normas Patrones Automatizadas / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Reconocimiento de Normas Patrones Automatizadas / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...