Your browser doesn't support javascript.
loading
Optimization of hybrid gelatin-polysaccharide bioinks exploiting thiol-norbornene chemistry using a reducing additive.
Carpentier, Nathan; Parmentier, Laurens; Van der Meeren, Louis; Skirtach, André G; Dubruel, Peter; Van Vlierberghe, Sandra.
Afiliación
  • Carpentier N; Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
  • Parmentier L; Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
  • Van der Meeren L; Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Skirtach AG; Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Dubruel P; Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
  • Van Vlierberghe S; Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
Biomed Mater ; 19(2)2024 Feb 05.
Article en En | MEDLINE | ID: mdl-38266277
ABSTRACT
Thiol-norbornene chemistry offers great potential in the field of hydrogel development, given its step growth crosslinking mechanism. However, limitations exist with regard to deposition-based bioprinting of thiol-containing hydrogels, associated with premature crosslinking of thiolated (bio)polymers resulting from disulfide formation in the presence of oxygen. More specifically, disulfide formation can result in an increase in viscosity thereby impeding the printing process. In the present work, hydrogels constituting norbornene-modified dextran (DexNB) combined with thiolated gelatin (GelSH) are selected as case study to explore the potential of incorporating the reducing agent tris(2-carboxyethyl)phosphine (TCEP), to prevent the formation of disulfides. We observed that, in addition to preventing disulfide formation, TCEP also contributed to premature, spontaneous thiol-norbornene crosslinking without the use of UV light as evidenced via1H-NMR spectroscopy. Herein, an optimal concentration of 25 mol% TCEP with respect to the amount of thiols was found, thereby limiting auto-gelation by both minimizing disulfide formation and spontaneous thiol-norbornene reaction. This concentration results in a constant viscosity during at least 24 h, a more homogeneous network being formed as evidenced using atomic force microscopy while retaining bioink biocompatibility as evidenced by a cell viability of human foreskin fibroblasts exceeding 70% according to ISO 10993-62016.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfinas / Compuestos de Sulfhidrilo / Bioimpresión Límite: Humans Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfinas / Compuestos de Sulfhidrilo / Bioimpresión Límite: Humans Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica
...