Your browser doesn't support javascript.
loading
Translating the Optimized Durability of Co-Based Anode Catalyst into Sustainable Anion Exchange Membrane Water Electrolysis.
Han, Sanghwi; Ryu, Jae Hyun; Lee, Won Bo; Ryu, Jaeyune; Yoon, Jeyong.
Afiliación
  • Han S; School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Ryu JH; School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Lee WB; School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Ryu J; School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Yoon J; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea.
Small ; 20(27): e2311052, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38282379
ABSTRACT
Development of robust electrocatalysts for the oxygen evolution reaction (OER) underpins the efficient production of green hydrogen via anion exchange membrane water electrolysis (AEMWE). This study elucidates the factors contributing to the degradation of cobalt-based (Co-based) OER catalysts synthesized via electrodeposition, thus establishing strategic approaches to enhance their longevity. Systematic variations in the electroplating process and subsequent heat treatment reveal a delicate balance between catalytic activity and durability, substantiated by comprehensive electrochemical assessments and material analyses. Building upon these findings, the Co-based anode is successfully optimized in the AEMWE single-cell configuration, showcasing an average degradation rate of 0.07 mV h-1 over a continuous operation for 1500 h at a current density of 1 A cm-2.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article
...