Your browser doesn't support javascript.
loading
Conductive gradient hydrogels allow spatial control of adult stem cell fate.
Song, Shang; McConnell, Kelly W; Shan, Dingying; Chen, Cheng; Oh, Byeongtaek; Sun, Jindi; Poon, Ada S Y; George, Paul M.
Afiliación
  • Song S; Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA. pgeorge1@stanford.edu.
  • McConnell KW; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
  • Shan D; Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
  • Chen C; Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA. pgeorge1@stanford.edu.
  • Oh B; Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA. pgeorge1@stanford.edu.
  • Sun J; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Poon ASY; Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA. pgeorge1@stanford.edu.
  • George PM; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
J Mater Chem B ; 12(7): 1854-1863, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38291979
ABSTRACT
Electrical gradients are fundamental to physiological processes including cell migration, tissue formation, organ development, and response to injury and regeneration. Current electrical modulation of cells is primarily studied under a uniform electrical field. Here we demonstrate the fabrication of conductive gradient hydrogels (CGGs) that display mechanical properties and varying local electrical gradients mimicking physiological conditions. The electrically-stimulated CGGs enhanced human mesenchymal stem cell (hMSC) viability and attachment. Cells on CGGs under electrical stimulation showed a high expression of neural progenitor markers such as Nestin, GFAP, and Sox2. More importantly, CGGs showed cell differentiation toward oligodendrocyte lineage (Oligo2) in the center of the scaffold where the electric field was uniform with a greater intensity, while cells preferred neuronal lineage (NeuN) on the edge of the scaffold on a varying electric field at lower magnitude. Our data suggest that CGGs can serve as a useful platform to study the effects of electrical gradients on stem cells and potentially provide insights on developing new neural engineering applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrogeles / Células Madre Adultas Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrogeles / Células Madre Adultas Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...