Your browser doesn't support javascript.
loading
Preventing E. coli Biofilm Formation with Antimicrobial Peptide-Functionalized Surface Coatings: Recognizing the Dependence on the Bacterial Binding Mode Using Live-Cell Microscopy.
Hansson, Adam; Karlsen, Eskil André; Stensen, Wenche; Svendsen, John S M; Berglin, Mattias; Lundgren, Anders.
Afiliación
  • Hansson A; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
  • Karlsen EA; Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 50115, Sweden.
  • Stensen W; Amicoat A/S, Sykehusvegen 23, Tromsø 9019, Norway.
  • Svendsen JSM; Department of Chemistry, UiT The Arctic University of Norway, Tromsø 9037, Norway.
  • Berglin M; Department of Chemistry, UiT The Arctic University of Norway, Tromsø 9037, Norway.
  • Lundgren A; Amicoat A/S, Sykehusvegen 23, Tromsø 9019, Norway.
ACS Appl Mater Interfaces ; 16(6): 6799-6812, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38294883
ABSTRACT
Antimicrobial peptides (AMPs) can kill bacteria by destabilizing their membranes, yet translating these molecules' properties into a covalently attached antibacterial coating is challenging. Rational design efforts are obstructed by the fact that standard microbiology methods are ill-designed for the evaluation of coatings, disclosing few details about why grafted AMPs function or do not function. It is particularly difficult to distinguish the influence of the AMP's molecular structure from other factors controlling the total exposure, including which type of bonds are formed between bacteria and the coating and how persistent these contacts are. Here, we combine label-free live-cell microscopy, microfluidics, and automated image analysis to study the response of surface-bound Escherichia coli challenged by the same small AMP either in solution or grafted to the surface through click chemistry. Initially after binding, the grafted AMPs inhibited bacterial growth more efficiently than did AMPs in solution. Yet, after 1 h, E. coli on the coated surfaces increased their expression of type-1 fimbriae, leading to a change in their binding mode, which diminished the coating's impact. The wealth of information obtained from continuously monitoring the growth, shape, and movements of single bacterial cells allowed us to elucidate and quantify the different factors determining the antibacterial efficacy of the grafted AMPs. We expect this approach to aid the design of elaborate antibacterial material coatings working by specific and selective actions, not limited to contact-killing. This technology is needed to support health care and food production in the postantibiotic era.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Escherichia coli / Péptidos Antimicrobianos Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Escherichia coli / Péptidos Antimicrobianos Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suecia
...