Your browser doesn't support javascript.
loading
New insights into the sustainable use of co-pyrolyzed dredged sediment for the in situ remediation of Cd polluted sediments in coastal rivers.
Liu, Qunqun; Sheng, Yanqing; Wang, Zheng; Liu, Xiaozhu.
Afiliación
  • Liu Q; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
  • Sheng Y; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China. Electronic address: yqsheng@yic.ac.cn.
  • Wang Z; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China.
  • Liu X; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China.
J Hazard Mater ; 466: 133664, 2024 Mar 15.
Article en En | MEDLINE | ID: mdl-38309161
ABSTRACT
The remediation of Cd-polluted sediment in coastal rivers is essential because of its potential hazards to river and marine ecosystems. Herein, a co-pyrolysis product of contaminated dredged sediment (S@BC) was innovatively applied to cap and immobilize Cd-contaminated sediment in coastal rivers in situ, and their remediation efficiencies, mechanisms, and microbial responses were explored based on a 360 d incubation experiment. The results showed that although S@BC immobilization and capping restrained sediment Cd release to the overlying water, S@BC capping presented a high inhibitory efficiency (66.0% vs. 95.3% at 360 d). Fraction analysis indicated that labile Cd was partially transformed to stable fraction after remediation, with decreases of 0.5%- 32.7% in the acid-soluble fraction and increases of 5.0%- 182.8% in the residual fraction. S@BC immobilization and capping had minor influences on the sediment bacterial community structure compared to the control. S@BC could directly adsorb sediment mobile Cd (precipitation and complexation) to inhibit Cd release and change sediment properties (e.g., pH and cation exchange capacity) to indirectly reduce Cd release. Particularly, S@BC capping also promoted Cd stabilization by enhancing the sediment sulfate reduction process. Comparatively, S@BC capping was a priority approach for Cd-polluted sediment remediation. This study provides new insights into the remediation of Cd-contaminated sediments in coastal rivers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China
...