Your browser doesn't support javascript.
loading
All-optical image denoising using a diffractive visual processor.
Isil, Çagatay; Gan, Tianyi; Ardic, Fazil Onuralp; Mentesoglu, Koray; Digani, Jagrit; Karaca, Huseyin; Chen, Hanlong; Li, Jingxi; Mengu, Deniz; Jarrahi, Mona; Aksit, Kaan; Ozcan, Aydogan.
Afiliación
  • Isil Ç; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Gan T; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ardic FO; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
  • Mentesoglu K; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Digani J; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
  • Karaca H; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Chen H; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Li J; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Mengu D; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Jarrahi M; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Aksit K; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ozcan A; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
Light Sci Appl ; 13(1): 43, 2024 Feb 04.
Article en En | MEDLINE | ID: mdl-38310118
ABSTRACT
Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In general, digital image denoising algorithms, executed on computers, present latency due to several iterations implemented in, e.g., graphics processing units (GPUs). While deep learning-enabled methods can operate non-iteratively, they also introduce latency and impose a significant computational burden, leading to increased power consumption. Here, we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images - implemented at the speed of light propagation within a thin diffractive visual processor that axially spans <250 × λ, where λ is the wavelength of light. This all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features, causing them to miss the output image Field-of-View (FoV) while retaining the object features of interest. Our results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of ~30-40%. We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum. Owing to their speed, power-efficiency, and minimal computational overhead, all-optical diffractive denoisers can be transformative for various image display and projection systems, including, e.g., holographic displays.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Light Sci Appl Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Light Sci Appl Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...