Your browser doesn't support javascript.
loading
Thompson Sampling─An Efficient Method for Searching Ultralarge Synthesis on Demand Databases.
Klarich, Kathryn; Goldman, Brian; Kramer, Trevor; Riley, Patrick; Walters, W Patrick.
Afiliación
  • Klarich K; ReNAgade Therapeutics, 640 Memorial Drive, Cambridge, Massachusetts 02139, United States.
  • Goldman B; Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02141, United States.
  • Kramer T; Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02141, United States.
  • Riley P; Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02141, United States.
  • Walters WP; Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02141, United States.
J Chem Inf Model ; 64(4): 1158-1171, 2024 02 26.
Article en En | MEDLINE | ID: mdl-38316125
ABSTRACT
Over the last five years, virtual screening of ultralarge synthesis on-demand libraries has emerged as a powerful tool for hit identification in drug discovery programs. As these libraries have grown to tens of billions of molecules, we have reached a point where it is no longer cost-effective to screen every molecule virtually. To address these challenges, several groups have developed heuristic search methods to rapidly identify the best molecules on a virtual screen. This article describes the application of Thompson sampling (TS), an active learning approach that streamlines the virtual screening of large combinatorial libraries by performing a probabilistic search in the reagent space, thereby never requiring the full enumeration of the library. TS is a general technique that can be applied to various virtual screening modalities, including 2D and 3D similarity search, docking, and application of machine-learning models. In an illustrative example, we show that TS can identify more than half of the top 100 molecules from a docking-based virtual screen of 335 million molecules by evaluating 1% of the data set.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Bases de Datos de Compuestos Químicos Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Bases de Datos de Compuestos Químicos Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...