Your browser doesn't support javascript.
loading
Modifications of DAMPs levels in extracellular environment induced by aminolevulinic acid-based photodynamic therapy of esophageal cancer cells.
Cunderlíková, Beata; Klucková, Kristína; Babál, Pavel; Mlkvý, Peter; Teplický, Tibor.
Afiliación
  • Cunderlíková B; Institute of Medical Physics and Biophysics, Comenius University, Bratislava, Slovakia.
  • Klucková K; International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia.
  • Babál P; Institute of Immunology, Comenius University, Bratislava, Slovakia.
  • Mlkvý P; Institute of Pathological Anatomy, Comenius University, Bratislava, Slovakia.
  • Teplický T; International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia.
Int J Radiat Biol ; 100(5): 802-816, 2024.
Article en En | MEDLINE | ID: mdl-38319688
ABSTRACT

PURPOSE:

Immunogenic cell death plays an important role in anticancer treatment because it combines cell death with appearance of damage associated molecular patterns that have the potential to activate anticancer immunity. Effects of damage associated molecular patterns induced by aminolevulinic acid-based photodynamic therapy were studied mainly on dendritic cells. They have not been deeply studied on macrophages that constitute the essential component of the tumor microenvironment. The aim of this study was to analyze features of esophageal cancer cell death in relation to release capacity of damage associated molecular pattern species, and to test the effect of related extracellular environmental alterations on macrophages. MATERIAL AND

METHODS:

Esophageal Kyse 450 carcinoma cells were subjected to aminolevulinic acid-based photodynamic therapy at different concentrations of aminolevulinic acid. Resting, IFN/LPS and IL-4 macrophage subtypes were prepared from monocytic THP-1 cell line. Cell death features and macrophage modifications were analyzed by fluorescence-based live cell imaging. ATP and HMGB1 levels in cell culture media were determined by ELISA assays. The presence of lipid peroxidation products in culture media was assessed by spectrophotometric detection of thiobarbituric acid reactive substances.

RESULTS:

Aminolevulinic acid-based photodynamic therapy induced various death pathways in Kyse 450 cells that included features of apoptosis, necrosis and ferroptosis. ATP amounts in extracellular environment of treated Kyse 450 cells increased with increasing aminolevulinic acid concentration. Levels of HMGB1, detectable by ELISA assay in culture media, were decreased after the treatment. Aminolevulinic acid-based photodynamic therapy induced lipid peroxidation of cellular structures and increased levels of extracellular lipid peroxidation products. Incubation of resting and IL-4 macrophages in conditioned medium from Kyse 450 cells treated by aminolevulinic acid-based photodynamic therapy induced morphological changes in macrophages, however, comparable alterations were induced also by conditioned medium from untreated cancer cells.

CONCLUSION:

Aminolevulinic acid-based photodynamic therapy leads to alterations in local extracellular levels of damage associated molecular patterns, however, comprehensive studies are needed to find whether they can be responsible for macrophage phenotype modifications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Neoplasias Esofágicas / Ácido Aminolevulínico / Macrófagos Límite: Humans Idioma: En Revista: Int J Radiat Biol Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Eslovaquia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Neoplasias Esofágicas / Ácido Aminolevulínico / Macrófagos Límite: Humans Idioma: En Revista: Int J Radiat Biol Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Eslovaquia
...