Your browser doesn't support javascript.
loading
T Cell Features in Glioblastoma May Guide Therapeutic Strategies to Overcome Microenvironment Immunosuppression.
Losurdo, Agnese; Di Muzio, Antonio; Cianciotti, Beatrice Claudia; Dipasquale, Angelo; Persico, Pasquale; Barigazzi, Chiara; Bono, Beatrice; Feno, Simona; Pessina, Federico; Santoro, Armando; Simonelli, Matteo.
Afiliación
  • Losurdo A; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Di Muzio A; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy.
  • Cianciotti BC; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Dipasquale A; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy.
  • Persico P; Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Barigazzi C; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Bono B; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Feno S; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy.
  • Pessina F; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
  • Santoro A; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy.
  • Simonelli M; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy.
Cancers (Basel) ; 16(3)2024 Jan 31.
Article en En | MEDLINE | ID: mdl-38339353
ABSTRACT
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor, bearing a survival estimate below 10% at five years, despite standard chemoradiation treatment. At recurrence, systemic treatment options are limited and the standard of care is not well defined, with inclusion in clinical trials being highly encouraged. So far, the use of immunotherapeutic strategies in GBM has not proved to significantly improve patients' prognosis in the treatment of newly diagnosed GBM, nor in the recurrent setting. Probably this has to do with the unique immune environment of the central nervous system, which harbors several immunosuppressive/pro-tumorigenic factors, both soluble (e.g., TGF-ß, IL-10, STAT3, prostaglandin E2, and VEGF) and cellular (e.g., Tregs, M2 phenotype TAMs, and MDSC). Here we review the immune composition of the GBMs microenvironment, specifically focusing on the phenotype and function of the T cell compartment. Moreover, we give hints on the therapeutic strategies, such as immune checkpoint blockade, vaccinations, and adoptive cell therapy, that, interacting with tumor-infiltrating lymphocytes, might both target in different ways the tumor microenvironment and potentiate the activity of standard therapies. The path to be followed in advancing clinical research on immunotherapy for GBM treatment relies on a twofold strategy testing combinatorial treatments, aiming to restore active immune anti-tumor responses, tackling immunosuppression, and additionally, designing more phase 0 and window opportunity trials with solid translational analyses to gain deeper insight into the on-treatment shaping of the GBM microenvironment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Italia
...