Development and validation of a federated learning framework for detection of subphenotypes of multisystem inflammatory syndrome in children.
medRxiv
; 2024 Jan 27.
Article
en En
| MEDLINE
| ID: mdl-38343837
ABSTRACT
Background:
Multisystem inflammatory syndrome in children (MIS-C) is a severe post-acute sequela of SARS-CoV-2 infection. The highly diverse clinical features of MIS-C necessities characterizing its features by subphenotypes for improved recognition and treatment. However, jointly identifying subphenotypes in multi-site settings can be challenging. We propose a distributed multi-site latent class analysis (dMLCA) approach to jointly learn MIS-C subphenotypes using data across multiple institutions.Methods:
We used data from the electronic health records (EHR) systems across nine U.S. children's hospitals. Among the 3,549,894 patients, we extracted 864 patients < 21 years of age who had received a diagnosis of MIS-C during an inpatient stay or up to one day before admission. Using MIS-C conditions, laboratory results, and procedure information as input features for the patients, we applied our dMLCA algorithm and identified three MIS-C subphenotypes. As validation, we characterized and compared more granular features across subphenotypes. To evaluate the specificity of the identified subphenotypes, we further compared them with the general subphenotypes identified in the COVID-19 infected patients.Findings:
Subphenotype 1 (46.1%) represents patients with a mild manifestation of MIS-C not requiring intensive care, with minimal cardiac involvement. Subphenotype 2 (25.3%) is associated with a high risk of shock, cardiac and renal involvement, and an intermediate risk of respiratory symptoms. Subphenotype 3 (28.6%) represents patients requiring intensive care, with a high risk of shock and cardiac involvement, accompanied by a high risk of >4 organ system being impacted. Importantly, for hospital-specific clinical decision-making, our algorithm also revealed a substantial heterogeneity in relative proportions of these three subtypes across hospitals. Properly accounting for such heterogeneity can lead to accurate characterization of the subphenotypes at the patient-level.Interpretation:
Our identified three MIS-C subphenotypes have profound implications for personalized treatment strategies, potentially influencing clinical outcomes. Further, the proposed algorithm facilitates federated subphenotyping while accounting for the heterogeneity across hospitals.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
1_ASSA2030
Problema de salud:
1_sistemas_informacao_saude
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
MedRxiv
Año:
2024
Tipo del documento:
Article