Your browser doesn't support javascript.
loading
KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
Zhang, Chengcheng; Zang, Tianyi; Zhao, Tianyi.
Afiliación
  • Zhang C; Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China.
  • Zang T; Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China.
  • Zhao T; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
Brief Bioinform ; 25(2)2024 Jan 22.
Article en En | MEDLINE | ID: mdl-38348746
ABSTRACT
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug-target interactions (DTIs) and drug-drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein-protein interactions prediction, ablation studies and case studies further validate its effectiveness.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China
...