Your browser doesn't support javascript.
loading
Targeting Nuclear Mechanics Mitigates the Fibroblast Invasiveness in Pathological Dermal Scars Induced by Matrix Stiffening.
Fu, Xiangting; Taghizadeh, Ali; Taghizadeh, Mohsen; Li, Cheng Ji; Lim, Nam Kyu; Lee, Jung-Hwan; Kim, Hye Sung; Kim, Hae-Won.
Afiliación
  • Fu X; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
  • Taghizadeh A; Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
  • Taghizadeh M; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
  • Li CJ; Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
  • Lim NK; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
  • Lee JH; Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
  • Kim HS; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
  • Kim HW; Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
Adv Sci (Weinh) ; 11(15): e2308253, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38353381
ABSTRACT
Pathological dermal scars such as keloids present significant clinical challenges lacking effective treatment options. Given the distinctive feature of highly stiffened scar tissues, deciphering how matrix mechanics regulate pathological progression can inform new therapeutic strategies. Here, it is shown that pathological dermal scar keloid fibroblasts display unique metamorphoses to stiffened matrix. Compared to normal fibroblasts, keloid fibroblasts show high sensitivity to stiffness rather than biochemical stimulation, activating cytoskeletal-to-nuclear mechanosensing molecules. Notably, keloid fibroblasts on stiff matrices exhibit nuclear softening, concomitant with reduced lamin A/C expression, and disrupted anchoring of lamina-associated chromatin. This nuclear softening, combined with weak adhesion and high contractility, facilitates the invasive migration of keloid fibroblasts through confining matrices. Inhibiting lamin A/C-driven nuclear softening, via lamin A/C overexpression or actin disruption, mitigates such invasiveness of keloid fibroblasts. These findings highlight the significance of the nuclear mechanics of keloid fibroblasts in scar pathogenesis and propose lamin A/C as a potential therapeutic target for managing pathological scars.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Queloide Límite: Humans Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Queloide Límite: Humans Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article
...