Your browser doesn't support javascript.
loading
A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture.
Park, Hyun; Yan, Xiaoli; Zhu, Ruijie; Huerta, Eliu A; Chaudhuri, Santanu; Cooper, Donny; Foster, Ian; Tajkhorshid, Emad.
Afiliación
  • Park H; Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Yan X; Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Zhu R; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Huerta EA; Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Chaudhuri S; Multiscale Materials and Manufacturing Lab, University of Illinois Chicago, Chicago, IL, 60607, USA.
  • Cooper D; Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Foster I; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
  • Tajkhorshid E; Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA. elihu@anl.gov.
Commun Chem ; 7(1): 21, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38355806
ABSTRACT
Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present the top six AI-generated MOFs with CO2 capacities greater than 2m mol g-1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Commun Chem Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Commun Chem Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...