Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats.
STAR Protoc
; 5(1): 102885, 2024 Mar 15.
Article
en En
| MEDLINE
| ID: mdl-38358881
ABSTRACT
Effective neural stimulation requires adequate parametrization. Gaussian-process (GP)-based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi-channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP-BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
Límite:
Animals
Idioma:
En
Revista:
STAR Protoc
Año:
2024
Tipo del documento:
Article