Your browser doesn't support javascript.
loading
Action recommendations review in community-based therapy and depression and anxiety outcomes: a machine learning approach.
Spinrad, Amit; Taylor, C Barr; Ruzek, Josef I; Jefroykin, Samuel; Friedlander, Tamar; Feleke, Israela; Lev-Ari, Hila; Szapiro, Natalia; Sadeh-Sharvit, Shiri.
Afiliación
  • Spinrad A; Eleos Health, 117 Kendrick Street, Suite 300, Needham, MA, 02494, USA. amits@eleos.health.
  • Taylor CB; Center for m2Health, Palo Alto University, Palo Alto, CA, USA.
  • Ruzek JI; Department of Psychiatry, Stanford Medical Center, Stanford, CA, USA.
  • Jefroykin S; Center for m2Health, Palo Alto University, Palo Alto, CA, USA.
  • Friedlander T; Department of Psychiatry, Stanford Medical Center, Stanford, CA, USA.
  • Feleke I; Eleos Health, 117 Kendrick Street, Suite 300, Needham, MA, 02494, USA.
  • Lev-Ari H; Eleos Health, 117 Kendrick Street, Suite 300, Needham, MA, 02494, USA.
  • Szapiro N; Eleos Health, 117 Kendrick Street, Suite 300, Needham, MA, 02494, USA.
  • Sadeh-Sharvit S; Eleos Health, 117 Kendrick Street, Suite 300, Needham, MA, 02494, USA.
BMC Psychiatry ; 24(1): 133, 2024 Feb 16.
Article en En | MEDLINE | ID: mdl-38365635
ABSTRACT

BACKGROUND:

While the positive impact of homework completion on symptom alleviation is well-established, the pivotal role of therapists in reviewing these assignments has been under-investigated. This study examined therapists' practice of assigning and reviewing action recommendations in therapy sessions, and how it correlates with patients' depression and anxiety outcomes.

METHODS:

We analyzed 2,444 therapy sessions from community-based behavioral health programs. Machine learning models and natural language processing techniques were deployed to discern action recommendations and their subsequent reviews. The extent of the review was quantified by measuring the proportion of session dialogues reviewing action recommendations, a metric we refer to as "review percentage". Using Generalized Estimating Equations modeling, we evaluated the correlation between this metric and changes in clients' depression and anxiety scores.

RESULTS:

Our models achieved 76% precision in capturing action recommendations and 71.1% in reviewing them. Using these models, we found that therapists typically provided clients with one to eight action recommendations per session to engage in outside therapy. However, only half of the sessions included a review of previously assigned action recommendations. We identified a significant interaction between the initial depression score and the review percentage (p = 0.045). When adjusting for this relationship, the review percentage was positively and significantly associated with a reduction in depression score (p = 0.032). This suggests that more frequent review of action recommendations in therapy relates to greater improvement in depression symptoms. Further analyses highlighted this association for mild depression (p = 0.024), but not for anxiety or moderate to severe depression.

CONCLUSIONS:

An observed positive association exists between therapists' review of previous sessions' action recommendations and improved treatment outcomes among clients with mild depression, highlighting the possible advantages of consistently revisiting therapeutic homework in real-world therapy settings. Results underscore the importance of developing effective strategies to help therapists maintain continuity between therapy sessions, potentially enhancing the impact of therapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Depresión / Trastorno Depresivo Límite: Humans Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Depresión / Trastorno Depresivo Límite: Humans Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...