Your browser doesn't support javascript.
loading
Simulating Z_{2} lattice gauge theory on a quantum computer.
Charles, Clement; Gustafson, Erik J; Hardt, Elizabeth; Herren, Florian; Hogan, Norman; Lamm, Henry; Starecheski, Sara; Van de Water, Ruth S; Wagman, Michael L.
Afiliación
  • Charles C; Department of Physics, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago.
  • Gustafson EJ; Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Hardt E; Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA.
  • Herren F; Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, California 94035, USA.
  • Hogan N; USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, California 94043, USA.
  • Lamm H; Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
  • Starecheski S; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Van de Water RS; Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA.
  • Wagman ML; Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA.
Phys Rev E ; 109(1-2): 015307, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38366518
ABSTRACT
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z_{2} gauge theory with matter to study the efficacy and interplay of different error mitigation

methods:

readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2024 Tipo del documento: Article País de afiliación: Trinidad y Tobago

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2024 Tipo del documento: Article País de afiliación: Trinidad y Tobago
...