Your browser doesn't support javascript.
loading
Predicting intensive care need in women with preeclampsia using machine learning - a pilot study.
Edvinsson, Camilla; Björnsson, Ola; Erlandsson, Lena; Hansson, Stefan R.
Afiliación
  • Edvinsson C; Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
  • Björnsson O; Division of Anaesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
  • Erlandsson L; Department of Anaesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden.
  • Hansson SR; Division of Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden.
Hypertens Pregnancy ; 43(1): 2312165, 2024 Dec.
Article en En | MEDLINE | ID: mdl-38385188
ABSTRACT

BACKGROUND:

Predicting severe preeclampsia with need for intensive care is challenging. To better predict high-risk pregnancies to prevent adverse outcomes such as eclampsia is still an unmet need worldwide. In this study we aimed to develop a prediction model for severe outcomes using routine biomarkers and clinical characteristics.

METHODS:

We used machine learning models based on data from an intensive care cohort with severe preeclampsia (n=41) and a cohort of preeclampsia controls (n=40) with the objective to find patterns for severe disease not detectable with traditional logistic regression models.

RESULTS:

The best model was generated by including the laboratory parameters aspartate aminotransferase (ASAT), uric acid and body mass index (BMI) with a cross-validation accuracy of 0.88 and an area under the curve (AUC) of 0.91. Our model was internally validated on a test-set where the accuracy was lower, 0.82, with an AUC of 0.85.

CONCLUSION:

The clinical routine blood parameters ASAT and uric acid as well as BMI, were the parameters most indicative of severe disease. Aspartate aminotransferase reflects liver involvement, uric acid might be involved in several steps of the pathophysiologic process of preeclampsia, and obesity is a well-known risk factor for development of both severe and non-severe preeclampsia likely involving inflammatory pathways..[Figure see text].
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Preeclampsia Límite: Female / Humans / Pregnancy Idioma: En Revista: Hypertens Pregnancy Asunto de la revista: ANGIOLOGIA / OBSTETRICIA Año: 2024 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Preeclampsia Límite: Female / Humans / Pregnancy Idioma: En Revista: Hypertens Pregnancy Asunto de la revista: ANGIOLOGIA / OBSTETRICIA Año: 2024 Tipo del documento: Article País de afiliación: Suecia
...