Superconducting Cavity-Based Sensing of Band Gaps in 2D Materials.
Nano Lett
; 24(15): 4369-4375, 2024 Apr 17.
Article
en En
| MEDLINE
| ID: mdl-38393831
ABSTRACT
The superconducting coplanar waveguide (SCPW) cavity plays an essential role in various areas like superconducting qubits, parametric amplifiers, radiation detectors, and studying magnon-photon and photon-phonon coupling. Despite its wide-ranging applications, the use of SCPW cavities to study various van der Waals 2D materials has been relatively unexplored. The resonant modes of the SCPW cavity exquisitely sense the dielectric environment. In this work, we measure the charge compressibility of bilayer graphene coupled to a half-wavelength SCPW cavity. Our approach provides a means to detect subtle changes in the capacitance of the bilayer graphene heterostructure, which depends on the compressibility of bilayer graphene, manifesting as shifts in the resonant frequency of the cavity. This method holds promise for exploring a wide class of van der Waals 2D materials, including transition metal dichalcogenides (TMDs) and their moiré, where DC transport measurement is challenging.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
India