Your browser doesn't support javascript.
loading
Energy Principles of Scientific Breakeven in an Inertial Fusion Experiment.
Hurricane, O A; Callahan, D A; Casey, D T; Christopherson, A R; Kritcher, A L; Landen, O L; Maclaren, S A; Nora, R; Patel, P K; Ralph, J; Schlossberg, D; Springer, P T; Young, C V; Zylstra, A B.
Afiliación
  • Hurricane OA; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Callahan DA; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Casey DT; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Christopherson AR; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Kritcher AL; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Landen OL; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Maclaren SA; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Nora R; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Patel PK; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Ralph J; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Schlossberg D; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Springer PT; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Young CV; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
  • Zylstra AB; Lawrence Livermore National Laboratory, P.O. Box 808, L-472, Livermore, California 94550, USA.
Phys Rev Lett ; 132(6): 065103, 2024 Feb 09.
Article en En | MEDLINE | ID: mdl-38394600
ABSTRACT
Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...