Your browser doesn't support javascript.
loading
Application of Machine Learning Techniques to Assess Alpha-Fetoprotein at Diagnosis of Hepatocellular Carcinoma.
Gil-Rojas, Sergio; Suárez, Miguel; Martínez-Blanco, Pablo; Torres, Ana M; Martínez-García, Natalia; Blasco, Pilar; Torralba, Miguel; Mateo, Jorge.
Afiliación
  • Gil-Rojas S; Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain.
  • Suárez M; Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain.
  • Martínez-Blanco P; Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain.
  • Torres AM; Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain.
  • Martínez-García N; Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain.
  • Blasco P; Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain.
  • Torralba M; Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain.
  • Mateo J; Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article en En | MEDLINE | ID: mdl-38396674
ABSTRACT
Hepatocellular carcinoma (HCC) is the most common primary liver tumor and is associated with high mortality rates. Approximately 80% of cases occur in cirrhotic livers, posing a significant challenge for appropriate therapeutic management. Adequate screening programs in high-risk groups are essential for early-stage detection. The extent of extrahepatic tumor spread and hepatic functional reserve are recognized as two of the most influential prognostic factors. In this retrospective multicenter study, we utilized machine learning (ML) methods to analyze predictors of mortality at the time of diagnosis in a total of 208 patients. The eXtreme gradient boosting (XGB) method achieved the highest values in identifying key prognostic factors for HCC at diagnosis. The etiology of HCC was found to be the variable most strongly associated with a poorer prognosis. The widely used Barcelona Clinic Liver Cancer (BCLC) classification in our setting demonstrated superiority over the TNM classification. Although alpha-fetoprotein (AFP) remains the most commonly used biological marker, elevated levels did not correlate with reduced survival. Our findings suggest the need to explore new prognostic biomarkers for individualized management of these patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_digestive_diseases / 6_liver_cancer Asunto principal: Alfa-Fetoproteínas / Carcinoma Hepatocelular / Aprendizaje Automático / Neoplasias Hepáticas Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_digestive_diseases / 6_liver_cancer Asunto principal: Alfa-Fetoproteínas / Carcinoma Hepatocelular / Aprendizaje Automático / Neoplasias Hepáticas Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: España
...