Your browser doesn't support javascript.
loading
Vegetation types and flood water level are dominant factors controlling the carbon sequestration potential in Dongting Lake floodplain, China.
Wang, Tao; Deng, Zhengmiao; Zhang, Chengyi; Zou, Yeai; Xie, Yonghong; Li, Feng; Xiao, Fengjin; Peng, Changhui.
Afiliación
  • Wang T; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 41012
  • Deng Z; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Natural Resources Affairs Cent
  • Zhang C; National Climate Center, China Meteorological Administration, Beijing 100081, China.
  • Zou Y; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 41012
  • Xie Y; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 41012
  • Li F; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 41012
  • Xiao F; National Climate Center, China Meteorological Administration, Beijing 100081, China.
  • Peng C; School of Geographic Sciences, Hunan Normal University, Changsha 410081, China; Department of Biology Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal H3C 3P8, Canada.
Sci Total Environ ; 921: 171146, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38401724
ABSTRACT
Wetlands are important carbon sinks. However, the carbon sequestration potential of flooded wetlands may be weakened owing to water regime changes induced by anthropogenic disturbances. Using the eddy covariance technique, this study quantified the effects of the water level and vegetation types on the net ecosystem CO2 exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) from a reed marsh (Miscanthus sacchariflorus) and a sedge meadow (Carex spp.) in the Dongting Lake floodplain from 2014 to 2016. Our results indicated that the sedge meadow (-89.49 to -186.47 g C m-2 y-1) and reed marsh (-246.12 to -513.94 g C m-2 y-1) were carbon sinks on the interannual timescale. However, the sedge meadow changed from a carbon sink to a carbon source during the flooding season. The effect of flooding on the carbon sink function in the reed marsh was dependent on the water level. The carbon sink function of the reed marsh was enhanced by moderate flooding (water level under 30.5 m in Chenglingji) owing to the inhibition of Reco, but was weakened by extremely high-water levels (over 33 m in Chenglingji) during the flooding season. Seasonal variations in NEE, GPP, and Reco were closely related to photosynthetic photon flux density, soil water content, water level, soil temperature, and air temperature. We can conclude that the increase in reed area combined with the decrease in flooding days in the sedge meadow can potentially enhance the carbon sink function of the Dongting Lake floodplain.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article
...