Your browser doesn't support javascript.
loading
Trap & kill: a neutrophil-extracellular-trap mimic nanoparticle for anti-bacterial therapy.
Zheng, Jingtao; Rong, Lei; Lu, Yao; Chen, Jing; Hua, Kai; Du, Yongzhong; Zhang, Qiang; Li, Weishuo.
Afiliación
  • Zheng J; Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China. liweishuo@njust.edu.cn.
  • Rong L; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China.
  • Lu Y; Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China. liweishuo@njust.edu.cn.
  • Chen J; Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. zhangqiang@njust.edu.cn.
  • Hua K; Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China. liweishuo@njust.edu.cn.
  • Du Y; National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China.
  • Zhang Q; Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. zhangqiang@njust.edu.cn.
  • Li W; Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China. liweishuo@njust.edu.cn.
Biomater Sci ; 12(7): 1841-1846, 2024 Mar 26.
Article en En | MEDLINE | ID: mdl-38410093
ABSTRACT
Fenton chemistry-mediated antimicrobials have demonstrated great promise in antibacterial therapy. However, the short life span and diffusion distance of hydroxyl radicals dampen the therapeutic efficiency of these antimicrobials. Herein, inspired by the neutrophil extracellular trap (NET), in which bacteria are trapped and agglutinated via electronic interactions and killed by reactive oxygen species, we fabricated a NET-mimic nanoparticle to suppress bacterial infection in a "trap & kill" manner. Specifically, this NET-mimic nanoparticle was synthesized via polymerization of ferrocene monomers followed by quaternization with a mannose derivative. Similar to the NET, the NET-mimic nanoparticles trap bacteria through electronic and sugar-lectin interactions between their mannose moieties and the lectins of bacteria, forming bacterial agglutinations. Therefore, they confine the spread of the bacteria and restrict the bacterial cells to the destruction range of hydroxyl radicals. Meanwhile, the ferrocene component of the nanoparticle catalyzes the production of highly toxic hydroxyl radicals at the H2O2 rich infection foci and effectively eradicates the agglutinated bacteria. In a mouse model of an antimicrobial-resistant bacteria-infected wound, the NET-mimic nanoparticles displayed potent antibacterial activity and accelerated wound healing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Ferrosos / Nanopartículas / Trampas Extracelulares / Antiinfecciosos Límite: Animals Idioma: En Revista: Biomater Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Ferrosos / Nanopartículas / Trampas Extracelulares / Antiinfecciosos Límite: Animals Idioma: En Revista: Biomater Sci Año: 2024 Tipo del documento: Article País de afiliación: China
...