Your browser doesn't support javascript.
loading
Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications.
Lu, Lu; Zhao, Hongqiao; Lu, Yucong; Zhang, Yuxuan; Wang, Xinran; Fan, Chengjuan; Li, Zesheng; Wu, Zhiguang.
Afiliación
  • Lu L; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Zhao H; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Lu Y; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Zhang Y; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Wang X; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Fan C; The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
  • Li Z; Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
  • Wu Z; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
Adv Healthc Mater ; 13(15): e2400414, 2024 06.
Article en En | MEDLINE | ID: mdl-38412402
ABSTRACT
Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica Límite: Animals / Humans Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica Límite: Animals / Humans Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article País de afiliación: China
...