Your browser doesn't support javascript.
loading
MFG-E8 induces epithelial-mesenchymal transition and anoikis resistance to promote the metastasis of pancreatic cancer cells.
Liu, Wuming; Ren, Yifan; Wang, Tao; Wang, Mengzhou; Xu, Yujia; Zhang, Jia; Bi, Jianbin; Wu, Zheng; Lv, Yi; Wu, Rongqian.
Afiliación
  • Liu W; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Aff
  • Ren Y; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of General Surgery, The Second Affiliat
  • Wang T; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Aff
  • Wang M; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Aff
  • Xu Y; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
  • Zhang J; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Gastroenterology, The Second Affilia
  • Bi J; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hosp
  • Wu Z; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  • Lv Y; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Aff
  • Wu R; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. Electronic address: rwu001@mail.xjtu.edu.cn.
Eur J Pharmacol ; 969: 176462, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38431242
ABSTRACT
Pancreatic cancer is an extremely malignant tumor, and only a few clinical treatment options exist. MFG-E8 and kindlin-2 all play an important role in cancer progression. However, the specific mechanism occurring between MFG-E8, kindlin-2 and the migration and invasion of pancreatic cancer cells remains unelucidated. To unravel the specific mechanism, this study assessed the potential association between MFG-E8 and kindlin-2 as well as the involvement of MFG-E8 in pancreatic cancer using two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1). Pancreatic cancer cells were treated with 0, 250, and 500 ng/ml MFG-E8, and the effects of MFG-E8 on the migration, invasion, and anoikis of pancreatic cancer cells were observed. To investigate the role of kindlin-2 in pancreatic cancer, kindlin-2-shRNAi was transfected to knock down its expression level in the two pancreatic cancer cell lines. Furthermore, cilengitide, a receptor blocker of MFG-E8, was used to explore the relationship between MFG-E8, kindlin-2, and pancreatic cancer progression. Our findings demonstrated that MFG-E8 promotes the migration and invasion of pancreatic cancer cells and induces cell anoikis resistance in a dose-dependent manner, which was effectively counteracted by cilengitide, a receptor blocker. Additionally, the knockdown of kindlin-2 expression nullified the effect of MFG-E8 on the migration and invasion of pancreatic cancer cells. Consequently, this study provides insights into the specific mechanism underlying the interplay between MFG-E8 and kindlin-2 in the progression of pancreatic cancer cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Anoicis Límite: Humans Idioma: En Revista: Eur J Pharmacol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Anoicis Límite: Humans Idioma: En Revista: Eur J Pharmacol Año: 2024 Tipo del documento: Article
...