Engineering RuBisCO-based shunt for improved cadaverine production in Escherichia coli.
Bioresour Technol
; 398: 130529, 2024 Apr.
Article
en En
| MEDLINE
| ID: mdl-38437969
ABSTRACT
The process of biological fermentation is often accompanied by the release of CO2, resulting in low yield and environmental pollution. Refixing CO2 to the product synthesis pathway is an attractive approach to improve the product yield. Cadaverine is an important diamine used for the synthesis of bio-based polyurethane or polyamide. Here, aiming to increase its final production, a RuBisCO-based shunt consisting of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulate kinase (PRK) was expressed in cadaverine-producing E. coli. This shunt was calculated capable of increasing the maximum theoretical cadaverine yield based on flux model analysis. When a functional RuBisCO-based shunt was established and optimized in E. coli, the cadaverine production and yield of the final engineered strain reached the highest level, which were 84.1 g/L and 0.37 g/g Glucose, respectively. Thus, the design of in situ CO2 fixation provides a green and efficient industrial production process.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
3_ND
Problema de salud:
3_neglected_diseases
/
3_zoonosis
Asunto principal:
Ribulosa-Bifosfato Carboxilasa
/
Escherichia coli
Idioma:
En
Revista:
Bioresour Technol
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China