Your browser doesn't support javascript.
loading
A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding.
Deng, Haodong; Li, Mengfan; Li, Jundi; Guo, Miaomiao; Xu, Guizhi.
Afiliación
  • Deng H; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory o
  • Li M; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory o
  • Li J; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory o
  • Guo M; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory o
  • Xu G; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory o
J Neurosci Methods ; 405: 110108, 2024 May.
Article en En | MEDLINE | ID: mdl-38458260
ABSTRACT

BACKGROUND:

Motor-Imagery-based Brain-Computer Interface (MI-BCI) is a promising technology to assist communication, movement, and neurological rehabilitation for motor-impaired individuals. Electroencephalography (EEG) decoding techniques using deep learning (DL) possess noteworthy advantages due to automatic feature extraction and end-to-end learning. However, the DL-based EEG decoding models tend to show large variations due to intersubject variability of EEG, which results from inconsistencies of different subjects' optimal hyperparameters. NEW

METHODS:

This study proposes a multi-branch multi-attention mechanism EEGNet model (MBMANet) for robust decoding. It applies the multi-branch EEGNet structure to achieve various feature extractions. Further, the different attention mechanisms introduced in each branch attain diverse adaptive weight adjustments. This combination of multi-branch and multi-attention mechanisms allows for multi-level feature fusion to provide robust decoding for different subjects.

RESULTS:

The MBMANet model has a four-classification accuracy of 83.18% and kappa of 0.776 on the BCI Competition IV-2a dataset, which outperforms other eight CNN-based decoding models. This consistently satisfactory performance across all nine subjects indicates that the proposed model is robust.

CONCLUSIONS:

The combine of multi-branch and multi-attention mechanisms empowers the DL-based models to adaptively learn different EEG features, which provides a feasible solution for dealing with data variability. It also gives the MBMANet model more accurate decoding of motion intentions and lower training costs, thus improving the MI-BCI's utility and robustness.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interfaces Cerebro-Computador Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interfaces Cerebro-Computador Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2024 Tipo del documento: Article
...