Your browser doesn't support javascript.
loading
(D-Ala2)GIP Inhibits Inflammatory Bone Resorption by Suppressing TNF-α and RANKL Expression and Directly Impeding Osteoclast Formation.
Lin, Angyi; Kitaura, Hideki; Ohori, Fumitoshi; Noguchi, Takahiro; Marahleh, Aseel; Ma, Jinghan; Ren, Jiayi; Miura, Mariko; Fan, Ziqiu; Narita, Kohei; Mizoguchi, Itaru.
Afiliación
  • Lin A; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Kitaura H; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Ohori F; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Noguchi T; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Marahleh A; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8575, Miyagi, Japan.
  • Ma J; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Ren J; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Miura M; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Fan Z; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Narita K; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
  • Mizoguchi I; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Miyagi, Japan.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article en En | MEDLINE | ID: mdl-38473802
ABSTRACT
Glucose-insulinotropic polypeptide (GIP) is an incretin hormone that induces insulin secretion and decreases blood glucose levels. In addition, it has been reported to suppress osteoclast formation. Native GIP is rapidly degraded by dipeptidyl peptidase-4 (DPP-4). (D-Ala2)GIP is a newly developed GIP analog that demonstrates enhanced resistance to DPP-4. This study aimed to evaluate the influence of (D-Ala2)GIP on osteoclast formation and bone resorption during lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. In vivo, mice received supracalvarial injections of LPS with or without (D-Ala2)GIP for 5 days. Osteoclast formation and bone resorption were evaluated, and TNF-α and RANKL expression were measured. In vitro, the influence of (D-Ala2)GIP on RANKL- and TNF-α-induced osteoclastogenesis, LPS-triggered TNF-α expression in macrophages, and RANKL expression in osteoblasts were examined. Compared to the LPS-only group, calvariae co-administered LPS and (D-Ala2)GIP led to less osteoclast formation, lower bone resorption, and decreased TNF-α and RANKL expression. (D-Ala2)GIP inhibited osteoclastogenesis induced by RANKL and TNF-α and downregulated TNF-α expression in macrophages and RANKL expression in osteoblasts in vitro. Furthermore, (D-Ala2)GIP suppressed the MAPK signaling pathway. The results suggest that (D-Ala2)GIP dampened LPS-triggered osteoclast formation and bone resorption in vivo by reducing TNF-α and RANKL expression and directly inhibiting osteoclastogenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoclastos / Resorción Ósea Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoclastos / Resorción Ósea Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Japón
...