Preparation and characterization of furfural residue derived char-based catalysts for biomass tar cracking.
Waste Manag
; 179: 182-191, 2024 Apr 30.
Article
en En
| MEDLINE
| ID: mdl-38479257
ABSTRACT
This study proposed an innovative strategy of catalytic cracking of tar during biomass pyrolysis/gasification using furfural residue derived biochar-based catalysts. Fe, Co, and Ni modified furfural residue char (FRC-Fe, FRC-Co, and FRC-Ni) were prepared by one-step impregnation method. The influences of cracking temperature and metal species on the tar cracking characteristics were investigated. The results showed that the tar conversion efficiency for all catalysts were improved with the cracking temperature increasing, the higher tar conversion efficiency achieved at 800 °C were 66.72 %, 89.58 %, 84.58 %, and 94.70 % for FRC, FRC-Fe, FRC-Co, and FRC-Ni respectively. FRC-Ni achieved the higher gas (H2, CO, CH4, CO2) yield 681.81 mL/g. At 800 °C, the catalyst (FRC-Ni) still reached a high tar conversion efficiency over 85.90 % after 5 cycles. SEM-EDS results showed that the distribution of Ni particles on the biochar support was uniform. TGA results demonstrated that FRC-Ni exhibited better thermal stability. XRD results indicated that there was no significant change in the grain size of Ni before and after the reaction. The FRC-Ni catalyst was reasonably stable due to its better anti-sintering and coke-resistant capabilities.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Carbón Orgánico
/
Furaldehído
/
Gases
Idioma:
En
Revista:
Waste Manag
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China