Your browser doesn't support javascript.
loading
Reinforcement using undoped carbon quantum dots (CQDs) with a partially carbonized structure doubles the toughness of PVA membranes.
Latif, Zeeshan; Albargi, Hasan B; Khaliq, Zubair; Shahid, Kinza; Khalid, Usama; Qadir, Muhammad Bilal; Ali, Mumtaz; Arshad, Salman Noshear; Alkorbi, Ali S; Jalalah, Mohammed.
Afiliación
  • Latif Z; Department of Materials, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan zeeshanlatif203@yahoo.com zubntu@yahoo.com kinzashahid1560@gmail.com usamakhalidqurashi@gmail.com.
  • Albargi HB; Department of Physics, Faculty of Science and Arts, Najran University Najran 11001 Saudi Arabia hbalbargi@nu.edu.sa.
  • Khaliq Z; Advanced Materials and Nano-Research Centre (AMNRC), Najran University Najran 11001 Saudi Arabia msjalalah@nu.edu.sa.
  • Shahid K; Department of Materials, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan zeeshanlatif203@yahoo.com zubntu@yahoo.com kinzashahid1560@gmail.com usamakhalidqurashi@gmail.com.
  • Khalid U; Department of Materials, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan zeeshanlatif203@yahoo.com zubntu@yahoo.com kinzashahid1560@gmail.com usamakhalidqurashi@gmail.com.
  • Qadir MB; Department of Materials, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan zeeshanlatif203@yahoo.com zubntu@yahoo.com kinzashahid1560@gmail.com usamakhalidqurashi@gmail.com.
  • Ali M; Department of Textile Engineering, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan bilal_ntu81@hotmail.com mumtaz.ali@ntu.edu.pk.
  • Arshad SN; Department of Textile Engineering, School of Engineering and Technology, National Textile University Faisalabad 37610 Pakistan bilal_ntu81@hotmail.com mumtaz.ali@ntu.edu.pk.
  • Alkorbi AS; Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences Lahore 54792 Pakistan salman.arshad@lums.edu.pk.
  • Jalalah M; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University Sharurah 68342 Saudi Arabia assalem@nu.edu.sa.
Nanoscale Adv ; 6(6): 1750-1764, 2024 Mar 12.
Article en En | MEDLINE | ID: mdl-38482029
ABSTRACT
Nano-carbon-reinforced polymer composites have gained much consideration in functional applications due to their attractive mechanical strength and cost-effectiveness. The surface chemistry and associated mechanical strength of carbon nanotubes (CNTs), graphene, and other carbon derivative-based nanocomposites are well understood. While CQDs are considered emerging carbon derivatives, their surface chemistry, unique physio-chemical properties, and dispersion behavior in polymers are yet to be explored. Therefore, in this work, CQDs with different structures were synthesized from lemon pulp and urea, and their rheology and mechanical strength were studied in the PVA matrix. The surface chemistry and structure of CQDs were controlled using different solvents and reaction temperatures, respectively. CQDs possessed a circular shape, with a size of <10 nm, having a suitable carbon core and functional groups, as confirmed by TEM and FTIR spectroscopy. The dynamic viscosity and particle size of PVA/CQDs films peaked at 4% inclusion due to the maximum crosslinking of U-CQDs with reinforcement at 180 °C. Compared with pure PVA, the optimized composite showed an 80% larger particle size with 67% better tensile strength at 4% U-CQDs concentration. In addition to enhanced mechanical strength, CQDs exhibited antibacterial activity in composites. These CQDs-reinforced PVA composites may be suitable for different functional textile applications (shape memory composites and photo-active textiles).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2024 Tipo del documento: Article
...