Detection of Antigen Presentation by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles.
Methods Mol Biol
; 2789: 161-169, 2024.
Article
en En
| MEDLINE
| ID: mdl-38507002
ABSTRACT
Nanoparticles are frequently considered in vaccine applications due to their ability to co-deliver multiple antigens and adjuvants to antigen-presenting cells. Some nanoparticles also have intrinsic adjuvant properties that further enhance their ability to stimulate immune cells. The delivery of tumor-specific antigens to antigen-presenting cells (APCs) with subsequent antigenic peptide presentation in the context of class I major histocompatibility complex (MHC-I) molecules represents an essential effort in developing nanotechnology-based cancer vaccines. Experimental models are, therefore, needed to gauge the efficiency of nanotechnology carriers in achieving peptide antigen delivery to APCs and presentation in the context of MHC-I. The assay described herein utilizes a model antigen ovalbumin and model APCs, murine bone marrow-derived dendritic cells. The 25-D1.16 antibody, specific to the ovalbumin (OVA) MHC-I peptide SIINFEKL, recognizes this peptide presented in the context of the murine H2-Kb class I MHC molecule, allowing the presentation of this antigen on APCs to be detected by flow cytometry after nanoparticle delivery.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Presentación de Antígeno
/
Nanopartículas
Límite:
Animals
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos