Your browser doesn't support javascript.
loading
Evaluation of the chronic toxicity of bisphenol A and bisphenol AF to sea cucumber Apostichopus japonicus after long-term single and combined exposure at environmental relevant concentration.
Lai, Kaiqi; Zhang, Libin; Xu, Jialei.
Afiliación
  • Lai K; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang L; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address: zhanglibin@qdio.ac.cn.
  • Xu J; Shandong Tonhe Ocean Technology Co., Ltd., Dongying, 257200, China.
Environ Res ; 251(Pt 2): 118748, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38522740
ABSTRACT
Bisphenols are emerging endocrine disrupting pollutant, and several studies have reported that they are already ubiquitous in various environmental matrices and intend to deposit in sediment. The primary sources of bisphenols are river and sewage discharge. Sea cucumber (Apostichopus japonicus), a typical deposit feeder, is one of the most important commercial marine species in Aisa. However, the effects of the bisphenol A (BPA) and its analogues bisphenol AF (BPAF) on sea cucumber was unclear. In this study, we carried out field survey in major sea cucumber farming areas in northern China, with the aim of determining which bisphenol analogue is the major bisphenol contamination in this aquaculture area. The results showed that the presence of BPAF was detected in four sampling sites (Dalian, Tangshan, Laizhou, and Longpan). The mean level of BPAF in Laizhou sediment samples was the highest which reached to 9.007 ± 4.702 µ g/kg. Among the seawater samples, the BPAF only have been detected in the samples collected at Longpan. (0.011 ± 0.003 µ g/L). Furthermore, we conducted an experiment to evaluate the single and combined toxicity of BPA and BPAF on sea cucumbers. The concentrations were informed by the findings based on the results of field research. (0.1, 1.0, and 10 µ g/L). After exposure, the body weight gain, and specific growth rate showed no significant changes (P > 0.05). We observed the histological alterations in respiratory tree of treated sea cucumbers including the fusion and detachment of lining epithelial tissue, and increase of lumen space. However, the catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) activity was not significantly changed (P > 0.05). We evaluated the effects of BPA and BPAF through calculating the integrated biomarker response index (IBR), and the results indicated that the toxicity of combined treatment was higher than single treatment. Additionally, BPAF exposure to A. japonicus was more toxic than BPA.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenoles / Contaminantes Químicos del Agua / Compuestos de Bencidrilo Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenoles / Contaminantes Químicos del Agua / Compuestos de Bencidrilo Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China
...