Your browser doesn't support javascript.
loading
Regulation of morphogenesis and pathogenicity by OsMep2, OsCph1, and OsPes1 in dimorphic entomopathogenic fungus Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae).
Liu, Guiqing; Zheng, Xuehong; Cao, Li; Han, Richou.
Afiliación
  • Liu G; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
  • Zheng X; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
  • Cao L; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
  • Han R; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
J Econ Entomol ; 117(3): 782-792, 2024 06 10.
Article en En | MEDLINE | ID: mdl-38526970
ABSTRACT
Polarized growth plays a key role in all domains of their biology, including morphogenesis and pathogenicity of filamentous fungi. However, little information is available about the determinants of polarized growth. The fungal Mep2, Pes1, and Cph1 proteins were identified to be involved in the dimorphic transition between yeast and hyphal forms in Candida albicans. In this study, evidence that the dimorphic fungal entomopathogen Ophiocordyceps sinensis Mep2, Pes1, and Cph1 proteins are involved in polarized growth is presented. OsMep2 was significantly upregulated at aerial hyphae and conidia germination stages. OsCph1 was significantly upregulated at aerial hyphae, conidia initiation, and conidia germination stages, and OsPes1 was significantly upregulated at the conidia germination stage. Deletions of OsMep2, OsCph1, and OsPes1 provoked defects in the polarized growth. The abilities of hyphal formation and the yields of blastospores and conidia for the ∆ OsMep2, ∆OsCph1, and ∆ OsPes1 mutants were significantly reduced. The conidia yields of the ΔOsMep2, ΔOsCph1, and ΔOsPes1 mutants were decreased by 69.17%, 60.90%, and 75.82%, respectively. Moreover, the pathogenicity of the ∆ OsMep2, ∆OsCph1, and ∆ OsPes1 mutants against Thitarodes xiaojinensis was significantly reduced. The mummification rate caused by wide type and ΔOsMep2, ΔOsCph1, and ΔOsPes1 mutants were 36.98% ± 8.52%, 0.31% ± 0.63%, 1.15% ± 1.57%, and 19.69% ± 5.6%, respectively. These results indicated that OsMep2, OsCph1, and OsPes1 are involved in the regulation of hyphal formation, sporulation, and pathogenicity of O. sinensis. This study provided a basis for the understanding of the fungal dimorphic development and improving the efficiency of artificial cultivation of O. sinensis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esporas Fúngicas / Proteínas Fúngicas / Hifa / Hypocreales Límite: Animals Idioma: En Revista: J Econ Entomol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esporas Fúngicas / Proteínas Fúngicas / Hifa / Hypocreales Límite: Animals Idioma: En Revista: J Econ Entomol Año: 2024 Tipo del documento: Article País de afiliación: China
...