The multimodality cell segmentation challenge: toward universal solutions.
Nat Methods
; 21(6): 1103-1113, 2024 Jun.
Article
en En
| MEDLINE
| ID: mdl-38532015
ABSTRACT
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Procesamiento de Imagen Asistido por Computador
/
Análisis de la Célula Individual
/
Aprendizaje Profundo
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Nat Methods
Asunto de la revista:
TECNICAS E PROCEDIMENTOS DE LABORATORIO
Año:
2024
Tipo del documento:
Article
País de afiliación:
Canadá