Your browser doesn't support javascript.
loading
In Vivo Fluorescent Labeling of Foam Cell-Derived Extracellular Vesicles as Circulating Biomarkers for In Vitro Detection of Atherosclerosis.
Ji, Moxuan; Wei, Yongchun; Ye, Zhuo; Hong, Xiaoqin; Yu, Xiaoxuan; Du, Rui; Li, Qiang; Sun, Wei; Liu, Dingbin.
Afiliación
  • Ji M; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Wei Y; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Ye Z; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
  • Hong X; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Yu X; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Du R; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Li Q; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Sun W; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
  • Liu D; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China.
J Am Chem Soc ; 146(14): 10093-10102, 2024 Apr 10.
Article en En | MEDLINE | ID: mdl-38545938
ABSTRACT
Real-time monitoring of the development of atherosclerosis (AS) is key to the management of cardiovascular disease (CVD). However, existing laboratory approaches lack sensitivity and specificity, mostly due to the dearth of reliable AS biomarkers. Herein, we developed an in vivo fluorescent labeling strategy that allows specific staining of the foam cell-derived extracellular vesicles (EVs) in atherosclerotic plaques, which are released into the blood as circulating biomarkers for in vitro detection of AS. This strategy relies on a self-assembled nanoprobe that could recognize foam cells specifically, where the probe is degraded by the intracellular HClO to produce a trifluoromethyl-bearing boron-dipyrromethene fluorophore (termed B-CF3), a lipophilic dye that can be transferred to the exosomal membranes. These circulating B-CF3-stained EVs can be detected directly on a fluorescence spectrometer or microplate reader without resorting to any sophisticated analytical method. This liquid-biopsy format enables early detection and real-time differentiation of lesion vulnerability during AS progression, facilitating effective CVD management.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_cardiovascular_diseases Asunto principal: Aterosclerosis / Vesículas Extracelulares Límite: Humans Idioma: En Revista: J Am Chem Soc / Journal of the american chemical society / J. am. chem. soc Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_cardiovascular_diseases Asunto principal: Aterosclerosis / Vesículas Extracelulares Límite: Humans Idioma: En Revista: J Am Chem Soc / Journal of the american chemical society / J. am. chem. soc Año: 2024 Tipo del documento: Article País de afiliación: China
...