Your browser doesn't support javascript.
loading
Harmine alleviated STZ-induced rat diabetic nephropathy: A potential role via regulating AMPK/Nrf2 pathway and deactivating ataxia-telangiectasia mutated (ATM) signaling.
Tabaa, Manar Mohammed El; Tabaa, Maram Mohammed El; Rashad, Eman; Elballal, Mohammed Salah; Elazazy, Ola.
Afiliación
  • Tabaa MME; Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt. Electronic address: manar.eltabaa@esri.usc.edu.eg.
  • Tabaa MME; Medical Physiology, Faculty of Medicine, Tanta University, Egypt. Electronic address: maram.eltabaa@med.tanta.edu.eg.
  • Rashad E; Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt. Electronic address: emanrashad@cu.edu.eg.
  • Elballal MS; Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt. Electronic address: mohamed.salah@buc.edu.eg.
  • Elazazy O; Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt. Electronic address: ola.emad@buc.edu.eg.
Int Immunopharmacol ; 132: 111954, 2024 May 10.
Article en En | MEDLINE | ID: mdl-38554444
ABSTRACT
Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3ß levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Ratas Wistar / Diabetes Mellitus Experimental / Nefropatías Diabéticas / Factor 2 Relacionado con NF-E2 / Proteínas Quinasas Activadas por AMP / Proteínas de la Ataxia Telangiectasia Mutada / Harmina Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Ratas Wistar / Diabetes Mellitus Experimental / Nefropatías Diabéticas / Factor 2 Relacionado con NF-E2 / Proteínas Quinasas Activadas por AMP / Proteínas de la Ataxia Telangiectasia Mutada / Harmina Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article
...