Your browser doesn't support javascript.
loading
Ligand bias underlies differential signaling of multiple FGFs via FGFR1.
Karl, Kelly; Del Piccolo, Nuala; Light, Taylor; Roy, Tanaya; Dudeja, Pooja; Ursachi, Vlad-Constantin; Fafilek, Bohumil; Krejci, Pavel; Hristova, Kalina.
Afiliación
  • Karl K; Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States.
  • Del Piccolo N; Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States.
  • Light T; Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States.
  • Roy T; Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States.
  • Dudeja P; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
  • Ursachi VC; Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.
  • Fafilek B; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
  • Krejci P; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
  • Hristova K; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Elife ; 122024 Apr 03.
Article en En | MEDLINE | ID: mdl-38568193
ABSTRACT
The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factores de Crecimiento de Fibroblastos Límite: Female / Humans / Pregnancy Idioma: En Revista: Elife Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factores de Crecimiento de Fibroblastos Límite: Female / Humans / Pregnancy Idioma: En Revista: Elife Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...