Your browser doesn't support javascript.
loading
Incremental regression of localization context for automatic segmentation of ossified ligamentum flavum from CT data.
Tao, Rong; Zou, Xiaoyang; Gao, Xiaoru; Li, Xinhua; Wang, Zhiyu; Zhao, Xin; Zheng, Guoyan; Hang, Donghua.
Afiliación
  • Tao R; Institute of Medical Robotics, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China.
  • Zou X; Institute of Medical Robotics, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China.
  • Gao X; Institute of Medical Robotics, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China.
  • Li X; Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
  • Wang Z; Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
  • Zhao X; Department of Orthopedics, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. zhaoxinmlg@126.com.
  • Zheng G; Institute of Medical Robotics, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China. guoyan.zheng@sjtu.edu.cn.
  • Hang D; Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China. donghua.hang@shsmu.edu.cn.
Int J Comput Assist Radiol Surg ; 19(9): 1723-1731, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38568402
ABSTRACT

PURPOSE:

Segmentation of ossified ligamentum flavum (OLF) plays a crucial role in developing computer-assisted, image-guided systems for decompressive thoracic laminectomy. Manual segmentation is time-consuming, tedious, and label-intensive. It also suffers from inter- and intra-observer variability. Automatic segmentation is highly desired.

METHODS:

A two-stage, localization context-aware framework is developed for automatic segmentation of ossified ligamentum flavum. In the first stage, localization heatmaps of OLFs are obtained via incremental regression. In the second stage, the obtained heatmaps are then treated as the localization context for a segmentation U-Net. Our framework can directly map a whole volumetic data to its volume-wise labels.

RESULTS:

We designed and conducted comprehensive experiments on datasets of 100 patients to evaluate the performance of the proposed method. Our method achieved an average Dice similarity coefficient of 61.2 ± 7.6%, an average surface distance of 1.1 ± 0.5 mm, and an average positive predictive value of 62.0 ± 12.8%.

CONCLUSION:

To the best knowledge of the authors, this is the first study aiming for automatic segmentation of ossified ligamentum flavum. Results from the comprehensive experiments demonstrate the superior performance of the proposed method over the state-of-the-art methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Osificación Heterotópica / Ligamento Amarillo Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Osificación Heterotópica / Ligamento Amarillo Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China
...