Your browser doesn't support javascript.
loading
Comprehensive evaluation and performance analysis of machine learning in heart disease prediction.
Al-Alshaikh, Halah A; P, Prabu; Poonia, Ramesh Chandra; Saudagar, Abdul Khader Jilani; Yadav, Manoj; AlSagri, Hatoon S; AlSanad, Abeer A.
Afiliación
  • Al-Alshaikh HA; Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia.
  • P P; Department of Computer Science, CHRIST University, Bangalore, 560029, India.
  • Poonia RC; Department of Computer Science, CHRIST University, Bangalore, 560029, India. rameshcpoonia@gmail.com.
  • Saudagar AKJ; Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia.
  • Yadav M; Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India.
  • AlSagri HS; Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia.
  • AlSanad AA; Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia.
Sci Rep ; 14(1): 7819, 2024 04 03.
Article en En | MEDLINE | ID: mdl-38570582
ABSTRACT
Heart disease is a leading cause of mortality on a global scale. Accurately predicting cardiovascular disease poses a significant challenge within clinical data analysis. The present study introduces a prediction model that utilizes various combinations of information and employs multiple established classification approaches. The proposed technique combines the genetic algorithm (GA) and the recursive feature elimination method (RFEM) to select relevant features, thus enhancing the model's robustness. Techniques like the under sampling clustering oversampling method (USCOM) address the issue of data imbalance, thereby improving the model's predictive capabilities. The classification challenge employs a multilayer deep convolutional neural network (MLDCNN), trained using the adaptive elephant herd optimization method (AEHOM). The proposed machine learning-based heart disease prediction method (ML-HDPM) demonstrates outstanding performance across various crucial evaluation parameters, as indicated by its comprehensive assessment. During the training process, the ML-HDPM model exhibits a high level of performance, achieving an accuracy rate of 95.5% and a precision rate of 94.8%. The system's sensitivity (recall) performs with a high accuracy rate of 96.2%, while the F-score highlights its well-balanced performance, measuring 91.5%. It is worth noting that the specificity of ML-HDPM is recorded at a remarkable 89.7%. The findings underscore the potential of ML-HDPM to transform the prediction of heart disease and aid healthcare practitioners in providing precise diagnoses, exerting a substantial influence on patient care outcomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_cardiovascular_diseases Asunto principal: Enfermedades Cardiovasculares / Mamíferos Proboscídeos / Cardiopatías Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_cardiovascular_diseases Asunto principal: Enfermedades Cardiovasculares / Mamíferos Proboscídeos / Cardiopatías Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita
...