Your browser doesn't support javascript.
loading
Blind instrument response function identification from fluorescence decays.
Gómez-Sánchez, Adrián; Devos, Olivier; Vitale, Raffaele; Sliwa, Michel; Sakhapov, Damir; Enderlein, Jörg; de Juan, Anna; Ruckebusch, Cyril.
Afiliación
  • Gómez-Sánchez A; Chemometrics Group, Universitat de Barcelona, Barcelona, Spain.
  • Devos O; Université Lille, CNRS, UMR 8516, Laboratoire Avancé de Spectroscopie pourles Intéractions la Réactivité et l'Environnement (LASIRE), Lille, France.
  • Vitale R; Université Lille, CNRS, UMR 8516, Laboratoire Avancé de Spectroscopie pourles Intéractions la Réactivité et l'Environnement (LASIRE), Lille, France.
  • Sliwa M; Université Lille, CNRS, UMR 8516, Laboratoire Avancé de Spectroscopie pourles Intéractions la Réactivité et l'Environnement (LASIRE), Lille, France.
  • Sakhapov D; Université Lille, CNRS, UMR 8516, Laboratoire Avancé de Spectroscopie pourles Intéractions la Réactivité et l'Environnement (LASIRE), Lille, France.
  • Enderlein J; III. Institute of Physics - Biophysics, Georg-August Universität, Göttingen, Germany.
  • de Juan A; III. Institute of Physics - Biophysics, Georg-August Universität, Göttingen, Germany.
  • Ruckebusch C; Chemometrics Group, Universitat de Barcelona, Barcelona, Spain.
Biophys Rep (N Y) ; 4(2): 100155, 2024 Jun 12.
Article en En | MEDLINE | ID: mdl-38590949
ABSTRACT
Time-resolved fluorescence spectroscopy plays a crucial role when studying dynamic properties of complex photochemical systems. Nevertheless, the analysis of measured time decays and the extraction of exponential lifetimes often requires either the experimental assessment or the modeling of the instrument response function (IRF). However, the intrinsic nature of the IRF in the measurement process, which may vary across measurements due to chemical and instrumental factors, jeopardizes the results obtained by reconvolution approaches. In this paper, we introduce a novel methodology, called blind instrument response function identification (BIRFI), which enables the direct estimation of the IRF from the collected data. It capitalizes on the properties of single exponential signals to transform a deconvolution problem into a well-posed system identification problem. To delve into the specifics, we provide a step-by-step description of the BIRFI method and a protocol for its application to fluorescence decays. The performance of BIRFI is evaluated using simulated and time-correlated single-photon counting data. Our results demonstrate that the BIRFI methodology allows an accurate recovery of the IRF, yielding comparable or even superior results compared with those obtained with experimental IRFs when they are used for reconvolution by parametric model fitting.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rep (N Y) Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biophys Rep (N Y) Año: 2024 Tipo del documento: Article País de afiliación: España
...