Your browser doesn't support javascript.
loading
Underwater Gesture Recognition Meta-Gloves for Marine Immersive Communication.
Liu, Jiaxu; Wang, Lihong; Xu, Ruidong; Zhang, Xinwei; Zhao, Jisheng; Liu, Hong; Chen, Fuxing; Qu, Lijun; Tian, Mingwei.
Afiliación
  • Liu J; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Wang L; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Xu R; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Zhang X; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Zhao J; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Liu H; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Chen F; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Qu L; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
  • Tian M; Health & Protective Smart Textiles Research Center (HPT)/Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, State Key Laboratory of Bio-Fibers & Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University
ACS Nano ; 18(16): 10818-10828, 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38597459
ABSTRACT
Rapid advancements in immersive communications and artificial intelligence have created a pressing demand for high-performance tactile sensing gloves capable of delivering high sensitivity and a wide sensing range. Unfortunately, existing tactile sensing gloves fall short in terms of user comfort and are ill-suited for underwater applications. To address these limitations, we propose a flexible hand gesture recognition glove (GRG) that contains high-performance micropillar tactile sensors (MPTSs) inspired by the flexible tube foot of a starfish. The as-prepared flexible sensors offer a wide working range (5 Pa to 450 kPa), superfast response time (23 ms), reliable repeatability (∼10000 cycles), and a low limit of detection. Furthermore, these MPTSs are waterproof, which makes them well-suited for underwater applications. By integrating the high-performance MPTSs with a machine learning algorithm, the proposed GRG system achieves intelligent recognition of 16 hand gestures under water, which significantly extends real-time and effective communication capabilities for divers. The GRG system holds tremendous potential for a wide range of applications in the field of underwater communications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article
...