Your browser doesn't support javascript.
loading
Carbon nanotube-encapsulated Co/Co3Fe7 heterojunctions as a highly-efficient bifunctional electrocatalyst for rechargeable zinc-air batteries.
Liu, Xiaofeng; Huo, Sichen; Xu, Xiaoqin; Wang, Xinyu; Zhang, Wanyu; Chen, Yanjie; Wang, Cheng; Liu, Xueting; Chang, Haiyang; Zou, Jinlong.
Afiliación
  • Liu X; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Huo S; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Xu X; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Wang X; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Zhang W; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Chen Y; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Wang C; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address: wangc_93@gdut.edu.cn.
  • JiahaoXie; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Liu X; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
  • Chang H; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China.
  • Zou J; Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China. Electronic address:
J Colloid Interface Sci ; 666: 296-306, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38603873
ABSTRACT
In oxygen electrocatalysis, how to rationally design low-cost catalysts with reasonable structure and long-term stability is a crucial issue. Here, an in-situ growth strategy is used to construct a shaped structure encapsulating a uniformly-dispersed Co/Co3Fe7 heterojunction in nitrogen-doped carbon nanotubes (Co/Co3Fe7@NCNTs). Hollow CoFe layered-double-hydroxide prisms act as sacrifices for in-situ growth of Co/Co3Fe7 nanoparticles, which also catalyze the growth of bamboo-like NCNTs. Tubular structure not only accelerates the charge transfer through the interactions between Co and Co3Fe7, but also limits the aggregation of the particles, thereby promoting the 4e- oxygen reduction/evolution reactions (ORR/OER) kinetics and stabilizing the bifunctional activity. Co/Co3Fe7@NCNTs-800 (pyrolyzed at 800 °C) shows exceptional ORR activity (half-wave potential of 0.89 V) and methanol tolerance. Meanwhile, Co/Co3Fe7@NCNTs-800 shows a small OER overpotential of 280 mV, which increases by only 9 mV after 1000 cyclic voltammetry (CV) cycles. The outstanding bifunctionality (potential gap of 0.62 V) is ascribed to the electronic structure modulation at the Co/Co3Fe7 heterointerface. Notably, it also has a high performance as an air-cathode for rechargeable zinc-air battery, showing high power density (165 mW cm-2) and specific capacity (770.5 m Ah kg-1). This work provides a new reference for promoting the development of alloy catalysts with heterogeneous interfaces.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China
...