Your browser doesn't support javascript.
loading
Local and global changes in cell density induce reorganisation of 3D packing in a proliferating epithelium.
Barone, Vanessa; Tagua, Antonio; Román, Jesus Á Andrés-San; Hamdoun, Amro; Garrido-García, Juan; Lyons, Deirdre C; Escudero, Luis M.
Afiliación
  • Barone V; Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Tagua A; Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA.
  • Román JÁA; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain.
  • Hamdoun A; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain.
  • Garrido-García J; Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Lyons DC; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain.
  • Escudero LM; Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA.
Development ; 151(20)2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38619327
ABSTRACT
Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes, adopting a shape named 'scutoid' that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here, we use live imaging of the sea star embryo coupled with deep learning-based segmentation to dissect the relative contributions of cell density, tissue compaction and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing immediately after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proliferación Celular / Embrión no Mamífero / Morfogénesis Límite: Animals Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proliferación Celular / Embrión no Mamífero / Morfogénesis Límite: Animals Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...