Your browser doesn't support javascript.
loading
Transcriptomics Analysis Identifies the Decline in the Alveolar Type II Stem Cell Niche in Aged Human Lungs.
Liu, Xue; Zhang, Xuexi; Yao, Changfu; Liang, Jiurong; Noble, Paul W; Jiang, Dianhua.
Afiliación
  • Liu X; Department of Medicine and Women's Guild Lung Institute and.
  • Zhang X; Department of Medicine and Women's Guild Lung Institute and.
  • Yao C; Department of Medicine and Women's Guild Lung Institute and.
  • Liang J; Department of Medicine and Women's Guild Lung Institute and.
  • Noble PW; Department of Medicine and Women's Guild Lung Institute and.
  • Jiang D; Department of Medicine and Women's Guild Lung Institute and.
Am J Respir Cell Mol Biol ; 71(2): 229-241, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38635761
ABSTRACT
Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento / Nicho de Células Madre / Células Epiteliales Alveolares / Transcriptoma / Pulmón Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Am J Respir Cell Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento / Nicho de Células Madre / Células Epiteliales Alveolares / Transcriptoma / Pulmón Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Am J Respir Cell Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article
...