Your browser doesn't support javascript.
loading
Development of highly efficient whole-cell catalysts of cis-epoxysuccinic acid hydrolase by surface display.
Zhou, Rui; Dong, Sheng; Feng, Yingang; Cui, Qiu; Xuan, Jinsong.
Afiliación
  • Zhou R; Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
  • Dong S; CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
  • Feng Y; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
  • Cui Q; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
  • Xuan J; Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China.
Bioresour Bioprocess ; 9(1): 92, 2022 Aug 29.
Article en En | MEDLINE | ID: mdl-38647583
ABSTRACT
Bacterial cis-epoxysuccinic acid hydrolases (CESHs) are intracellular enzymes used in the industrial production of enantiomeric tartaric acids. The enzymes are mainly used as whole-cell catalysts because of the low stability of purified CESHs. However, the low cell permeability is the major drawback of the whole-cell catalyst. To overcome this problem, we developed whole-cell catalysts using various surface display systems for CESH[L] which produces L(+)-tartaric acid. Considering that the display efficiency depends on both the carrier and the passenger, we screened five different anchoring motifs in Escherichia coli. Display efficiencies are significantly different among these five systems and the InaPbN-CESH[L] system has the highest whole-cell enzymatic activity. Conditions for InaPbN-CESH[L] production were optimized and a maturation step was discovered which can increase the whole-cell activity several times. After optimization, the total activity of the InaPbN-CESH[L] surface display system is higher than the total lysate activity of an intracellular CESH[L] overexpression system, indicating a very high CESH[L] display level. Furthermore, the whole-cell InaPbN-CESH[L] biocatalyst exhibited good storage stability at 4 °C and considerable reusability. Thereby, an efficient whole-cell CESH[L] biocatalyst was developed in this study, which solves the cell permeability problem and provides a valuable system for industrial L(+)-tartaric acid production.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article País de afiliación: China
...