Your browser doesn't support javascript.
loading
Point mutation of V252 in neomycin C epimerase enlarges substrate-binding pocket and improves neomycin B accumulation in Streptomyces fradiae.
Li, Xiangfei; Yu, Fei; Wang, Fang; Wang, Sang; Han, Rumeng; Cheng, Yihan; Zhao, Ming; Sun, Junfeng; Xue, Zhenglian.
Afiliación
  • Li X; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Yu F; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
  • Wang F; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Wang S; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Han R; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Cheng Y; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Zhao M; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Sun J; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
  • Xue Z; Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China. xzlahpu@163.com.
Bioresour Bioprocess ; 9(1): 123, 2022 Dec 05.
Article en En | MEDLINE | ID: mdl-38647873
ABSTRACT
Neomycin, an aminoglycoside antibiotic with broad-spectrum antibacterial resistance, is widely used in pharmaceutical and agricultural fields. However, separation and purification of neomycin B as an active substance from Streptomyces fradiae are complicated. Although NeoN can catalyze conversion of neomycin C to neomycin B, the underlying catalytic mechanism is still unclear. In this study, the genomic information of high-yielding mutant S. fradiae SF-2 was elucidated using whole-genome sequencing. Subsequently, the mechanism of NeoN in catalyzing conversion of neomycin C to neomycin B was resolved based on NeoN-SAM-neomycin C ternary complex. Mutant NeoNV252A showed improved NeoN activity, and the recombinant strain SF-2-NeoNV252A accumulated 16,766.6 U/mL neomycin B, with a decrease in neomycin C ratio from 16.1% to 6.28%, when compared with the parental strain SF-2. In summary, this study analyzed the catalytic mechanism of NeoN, providing significant reference for rational design of NeoN to improve neomycin B production and weaken the proportion of neomycin C.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article País de afiliación: China
...