Your browser doesn't support javascript.
loading
MnO/ZnO:Zn Thin-Film Frequency Adaptive Heterostructure for Future Sustainable Memristive Systems.
Neri-Espinoza, Karen A; Andraca-Adame, José A; Domínguez-Crespo, Miguel A; Gutiérrez-Galicia, Francisco; Baca-Arroyo, Roberto; Dorantes-Rosales, Héctor J; Peña-Sierra, Ramón.
Afiliación
  • Neri-Espinoza KA; Department of Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), Hidalgo 42162, Mexico.
  • Andraca-Adame JA; Department of Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), Hidalgo 42162, Mexico.
  • Domínguez-Crespo MA; Department of Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), Hidalgo 42162, Mexico.
  • Gutiérrez-Galicia F; Department of Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), Hidalgo 42162, Mexico.
  • Baca-Arroyo R; Department of Electronics, Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico.
  • Dorantes-Rosales HJ; Department of Metallurgical and Materials Engineering, Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico.
  • Peña-Sierra R; Department of Electrical Engineering, Sección de Electrónica de Estado Sólido (SEES), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico.
Nanomaterials (Basel) ; 14(8)2024 Apr 10.
Article en En | MEDLINE | ID: mdl-38668153
ABSTRACT
In recent years, advances in materials engineering based on adaptive electronics have found a new paradigm to optimize drawbacks in signal processing. A two-layer MnO/ZnOZn heterostructure envisioned for frequency adaptive electronic signal processing is synthesized by sputtering, where the use of internal states allows reconfigurability to obtain new operating modes at different frequency input signals. X-ray diffraction (XRD) analysis is performed on each layer, revealing a cubic structure for MnO and a hexagonal structure for ZnOZn with preferential growth in [111] and [002] directions, respectively. Scanning electron microscope (SEM) micrographs show that the surface of both materials is homogeneous and smooth. The thickness for each layer is determined to be approximately 106.3 nm for MnO, 119.3 nm for ZnOZn and 224.1 nm for the MnO/ZnOZn structure. An electrical characterisation with an oscilloscope and signal generator was carried out to obtain the time-response signals and current-voltage (I-V) curves, where no degradation is detected when changing frequencies within the range of 100 Hz to 1 MHz. An equivalent circuit is proposed to explain the effects in the interface. Measurements of switching speeds from high resistance state (HRS) to low resistance state (LRS) at approximately 17 ns, highlight the device's rapid adaptability, and an estimated switching ratio of approximately 2 × 104 indicates its efficiency as a memristive component. Finally, the MnO/ZnOZn heterojunction delivers states that are stable, repeatable, and reproducible, demonstrating how the interaction of the materials can be utilised in adaptive device applications by applying frequencies and internal states to create new and innovative design schematics, thus reducing the number of components/connections in a system for future sustainable electronics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: México

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: México
...