Your browser doesn't support javascript.
loading
MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.
Zhao, Jing; Shen, Yusong; Liu, Xinyi; Hou, Xiaoyuan; Ding, Xuetong; An, Yu; Hui, Hui; Tian, Jie; Zhang, Hui.
Afiliación
  • Zhao J; School of Engineering Medicine, Beihang University, Beijing, China.
  • Shen Y; School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Liu X; School of Computer Science and Engineering, Southeast University, Nanjing, China.
  • Hou X; School of Engineering Medicine, Beihang University, Beijing, China.
  • Ding X; School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • An Y; School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
  • Hui H; School of Engineering Medicine, Beihang University, Beijing, China.
  • Tian J; School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Zhang H; School of Engineering Medicine, Beihang University, Beijing, China.
Med Phys ; 51(8): 5492-5509, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38700948
ABSTRACT

BACKGROUND:

Magnetic particle imaging (MPI) is a recently developed, non-invasive in vivo imaging technique to map the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIONs) in animal tissues with high sensitivity and speed. It is a challenge to reconstruct images directly from the received signals of MPI device due to the complex physical behavior of the nanoparticles. System matrix and X-space are two commonly used MPI reconstruction methods, where the former is extremely time-consuming and the latter usually produces blurry images.

PURPOSE:

Currently, we proposed an end-to-end machine learning framework to reconstruct high-resolution MPI images from 1-D voltage signals directly and efficiently.

METHODS:

The proposed framework, which we termed "MPIGAN", was trained on a large MPI simulation dataset containing 291 597 pairs of high-resolution 2-D phantom images and each image's corresponding voltage signals, so that it was able to accurately capture the nonlinear relationship between the spatial distribution of SPIONs and the received voltage signal, and realized high-resolution MPI image reconstruction.

RESULTS:

Experiment results showed that, MPIGAN exhibited remarkable abilities in high-resolution MPI image reconstruction. MPIGAN outperformed the traditional methods of system matrix and X-space in recovering the fine-scale structure of magnetic nanoparticles' spatial distribution and achieving enhanced reconstruction performance in both visual effects and quantitative assessments. Moreover, even when the received signals were severely contaminated with noise, MPIGAN could still generate high-quality MPI images.

CONCLUSION:

Our study provides a promising AI solution for end-to-end, efficient, and high-resolution magnetic particle imaging reconstruction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Idioma: En Revista: Med Phys Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Idioma: En Revista: Med Phys Año: 2024 Tipo del documento: Article País de afiliación: China
...